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Abstract

The overall equipment effectiveness (OEE) is a management ratio to evaluate the added value of machine tools. Unplanned machine downtime
reduces the operational availability and therefore, the OEE. Increased machine costs are the consequence. An important cause of unplanned
machine downtimes is the total failure of ball screws of the feed axes due to wear. Therefore, monitoring of the condition of ball screws is
important. Common concepts rely on high-frequency acceleration sensors from external control systems to detect a change of the condition. For
trend and detailed damage analysis, large amounts of data are generated and stored over a long time period (>5 years), resulting in corresponding
data storage costs. Additional axes or machine tools increase the data volume further, adding to the total storage costs. To minimize these costs,
data compression or source coding has to be applied. To achieve maximum compression ratios, lossy coding algorithms have to be used, which
introduce distortion into a signal. So far there exists no research about the impact of these coding distortion.
In this work, the influence of lossy coding algorithms on a condition monitoring algorithm (CMA) is investigated. The CMA is based on principal
component analysis and uses 17 features such as kurtosis and standard deviation to classify the state of the ball screw based on signals recorded
by several acceleration sensors. Both, low and high cost sensors were evaluated.
Using the example of preload loss of ball screws with four different preload states and using differential pulse-code modulation with 2 bit scalar
quantization together with entropy coding, compression ratios between approximately 11.0 and 14.2 corresponding to close to 1 bit per sample,
in contrast to the 16 bit/sample of the original, uncoded samples, were achieved. A decrease of the achievable compression ratios with decreasing
preload was observed. The classification accuracy of the CMA remained either unaffected by the source coding or was even improved by the
source coding, even at 1 bit scalar quantization. No impact of the sensor quality (low/high cost) could be found. These results indicate that even
higher compression ratios could be achieved if CMAs are adjusted to take into account source coding artifacts.
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Abstract

The overall equipment effectiveness (OEE) is a management ratio to evaluate the added value of machine tools. Unplanned machine downtime
reduces the operational availability and therefore, the OEE. Increased machine costs are the consequence. An important cause of unplanned ma-
chine downtimes is the total failure of ball screws of the feed axes due to wear. Therefore, monitoring of the condition of ball screws is important.
Common concepts rely on high-frequency acceleration sensors from external control systems to detect a change of the condition. For trend and
detailed damage analysis, large amounts of data are generated and stored over a long time period (>5 years), resulting in corresponding data
storage costs. Additional axes or machine tools increase the data volume further, adding to the total storage costs. To minimize these costs, data
compression or source coding has to be applied. To achieve maximum compression ratios, lossy coding algorithms have to be used, which intro-
duce distortion in a signal. In this work, the influence of lossy coding algorithms on a condition monitoring algorithm (CMA) using acceleration
signals is investigated. The CMA is based on principal component analysis and uses 17 features such as standard deviation to predict the preload
condition of a ball screw. It is shown that bit rate reduction through lossy compression algorithms is possible without affecting the condition
monitoring - as long as the compression algorithm is known. In contrast, an unknown compression algorithm reduces the classification accuracy
of condition monitoring by about 20 % when coding with a quantizer resolution of 4 bit/sample.

c© 2021 The Authors. Published by Elsevier B.V.
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Peer-review under responsibility of the scientific committee of the 18th CIRP Conference on Modeling of Machining Operations.
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1. Introduction

Unplanned failures and thus downtimes of machine tools
cause immense costs for companies. On average, 5 minutes in
the automotive industry causes follow-up costs of 100.000 e
[15]. Therefore, high operational reliability and availability of
machine tools must be ensured. However, the availability is lim-
ited, for example, by unplanned, wear-related failures of a ball
screw [10]. Predictive maintenance and thus condition monitor-
ing of the ball screw is mandatory. Furthermore, extensive data
and machine learning methods are required for automated con-
dition monitoring and to be able to trace the causes of failure

∗ Reemt Hinrichs. Tel.: +49-511-762-5055
∗∗ Alexander Schmidt. Tel.: +49-511-762-18309

E-mail addresses: hinrichs@tnt.uni-hannover.de (Reemt Hinrichs).,
schmidt@ifw.uni-hannover.de (Alexander Schmidt).

of complex components, such as ball screws [3, 8, 19]. The
costs of data storage are proportional to the amount of data
stored and thus to the degree of digitization. The more than
20,000 registered machine tools in the cloud customer portal
of the world’s largest manufacturer of metal-cutting machine
tools in 2019 alone cause theoretical storage costs of more than
2,349,000 e per year - assuming ten applied acceleration sen-
sors ( fS = 10 kHz) with 16 bit/sample and storage device costs
of 0.02e/GB [4, 2]. Backup copies, energy supply etc. increase
this amount many times over [2]. Due to these costs, there is
a need to compress data or delete non-significant information.
However, for maximum compression, lossy compression algo-
rithms are applied which introduce distortions in the signals.

Data compression in the context of condition monitoring of
rotating machine elements such as gears and bearings is inves-
tigated by [18, 7, 16, 17]. In relation to system identification,
the influence of differential pulse code modulation is analyzed
in [21]. The work shows the possibility of compressing accel-
eration signals and further using them for condition monitor-2212-8271 c© 2021 The Authors. Published by Elsevier B.V.
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ing. However, there is no knowledge about the impact of cod-
ing distortion on condition monitoring of preloaded ball screws.
Due to the different geometry of the ball screw compared to a
simple stationary rotating bearing, the behavior is expected to
be significantly different. In this work, the lossy coding tech-
niques differential pulse-code modulation as well as predictive
vector quantization are used to compress data recorded from a
acceleration sensor applied on a preloaded ball screw. For the
ball screw, four conditions are considered, ranging from high
preload to backlash. Signal analytic condition monitoring is ap-
plied and the accuracy of the condition monitoring on uncom-
pressed data is compared to the accuracy on coded data.

This manuscript is structured as follows: in section 2, condi-
tion monitoring of preloaded ball screws and the measurement
setup for the data acquisition are explained. In section 3, details
of the applied coding algorithms are described. In section 4, the
accuracy of the condition monitoring with coded and uncoded
data as well as rate-distortion curves are shown and discussed
in section 5. The manuscript concludes in section 6.

2. Condition monitoring of preloaded ball screws

Ball screws are used in machine tools to realize the rela-
tive movement between tool and workpiece. Consequently, the
machining accuracy is highly dependent on the ball screw as-
sembly. To enhance manufacturing accuracy, ball screws are
preloaded in machine tools. For instance, single nuts are filled
with oversized balls (some µm). A 4-point contact preload re-
sults from the selected ball oversize. The preload causes fric-
tion and thus wear. Due to the relative movement between the
balls, the spindle and the nut, abrasive wear occurs. As a result,
the ball oversize is reduced over the lifetime of the ball screw.
This decrease the rigidity and leads to poorer positioning ac-
curacy. The condition of the ball screw is to be considered as
total failure as soon as the required manufacturing tolerances
cannot longer be met or process vibrations, such as axis chatter,
occur. Reliable estimation of the time of failure is not possible
in advance [20]. Therefore, the condition of ball screws must be
monitored by a condition monitoring system. For this purpose, a
differentiation is made between the use of internal and external
control signals. While the internal control signals are charac-
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terized as cost-effective and robust, the external control signals
are usually characterized by a higher accuracy. For example,
the external acceleration sensors can be applied very close to
the point of impact thus enabling higher damage sensitivity and
damage diagnosis. Klein shows approaches to monitor the fa-
tigue damage of ball screws with applied acceleration sensors
[10]. Furthermore, Klein presents an approach to monitor insuf-
ficient lubrication as a driver for preload loss with accelerome-
ters in the high frequency range 10 - 25 kHz [10]. Further work
on condition monitoring is presented in [14, 5, 11]. It should be
noted that for condition monitoring of ball screws mainly ac-
celerometers are used, whose sampling rate, taking into account
the Nyquist-Shannon sampling theorem, are up to 100 kHz. As
a consequence, large datasets are generated and stored.

2.1. Method for condition monitoring

Fig. 1 shows the used approach of the implemented condi-
tion monitoring. The condition monitoring method is mainly
divided into the fields of data acquisition, preprocessing and
processing as well as condition classification. In the following,
the individual fields are described.

2.2. Measurement setup and data acquisition

A Bosch Rexroth ball screw with single nut 40 x 20 x 6 -
3 (d0 x Ph x Dw - i) with a screw length of 2,002 mm was
used. The ball screw is preloaded with an adaptive 4-point
contact preload. Depending on the oversize of the balls, the
preload varies between a high preload C3 (5 % of the dynamic
load capacity), average preload C2, moderate preload C1 and
clearance C0. Internal and external control signals are recorded
during the continuous movement from the fixed to the float-
ing bearing and back. The movement cycle is performed 22
times to improve the signal reliability. Whereby the first and
last movement cycle were discarded. Thus, 20 similar move-
ment sequences are available. The feed rate was defined for
these investigations at 17,000 mm/min. The data of the accel-
eration sensor KS94B.100 in axial direction from Metra Mess-
und Frequenztechnik in Radebeul e. K. with a sampling rate of
fs = 100 kHz is stored by the data acquisition system. Fig. 2
shows the data acquisition system and the positioning of the
acceleration sensor.

2.3. Data preprocessing for condition monitoring

The time data is separated into individual repeating sections,
know as segments, according to the movement condition. In the
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following, the forward and backward movement from fixed to
floating bearing without acceleration phases are used as seg-
ments. Subsequently, 17 statistic values of position, shape and
dispersion, so-called features, are extracted to describe the sig-
nal characteristics for each segment [13]. The features are, for
example, the mean value, the kurtosis or the standard devia-
tion. Based on these features the preload condition is later de-
termined. To increase the robustness of the approach and to re-
duce the complexity, only statistically significant features for
preload differentiation are selected and subsequently fused with
the principal component analysis (PCA) and then reduced to
the first and second principle component, see Fig. 3. The figure
depicts the raw signal on the left and the extracted and fused
information on the right as the principal components for the
different preload conditions. In this case, the first two principle
components combine > 95 % of the signal variance. Thereby
the statistical significance is calculated with the F-statistic Fstat
according to Backhaus etc. al (Eq. 1) for two conditions [1].
In Eq. 1, G represents the considered preload conditions, here
two, K is the number of observations, here 20, µ(g) indicates the
overall mean or condition mean. The declared variance, the ex-
perimental effect of the preload variation, is set in relation to the
non-declared variance. As the F-statistic increases, the statisti-
cal significance of the feature distinguishing the preload varia-
tion increases. The selection limit for feature fusion (PCA) was
defined as Fstat = 50. The statistical significance was calculated
locally between all possible combinations of the preload condi-
tions, six in total. Subsequently, the lowest calculated value was
considered as the decisive F-statistic for the automatic feature
selection.

Fstat =

∑G
g=1 K · (µg − µ)2/(G − 1)∑G

g=1
∑K

k=1(ygk − µg)2/(G · (K − 1))
(1)

2.4. Condition classification

The extracted and fused information, the principal compo-
nents, are subsequently used for preload classification using de-
cision tree methods. For this purpose, 100 times randomly 75 %
of the measured data are used to train and 25 % of the data are
used to test the results of the decision tree. The classification ac-
curacy A is subsequently calculated as the ratio of the correctly
classified preload conditions to the total number of trials. Essen-
tial is the consideration of a known and unknown change of the
trained condition. Therefore, this paper distinguishes whether
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Fig. 3: Raw signal of the acceleration sensor and the first two derived principal
components for the four preload conditions Ci

the classifier was trained with the uncompressed or the com-
pressed data. Thus, the following research questions are to be
distinguished:

1. Is condition monitoring with compressed data possible in
principle?

2. Is condition monitoring with compressed data possible if
only uncompressed data are known as reference values?

With answering the first question, it becomes clear whether
preload monitoring with extracted features from compressed
time series is possible at all. For the second question, it can be
concluded whether extracted features from uncompressed data
are in general comparable to those of compressed data.

3. Methods for data compression

In this section the applied data compression techniques are
explained as well as the evaluation method used to obtain the
results of this work.

3.1. Differential Pulse-Code Modulation

Differential pulse-code modulation (DPCM) is a standard al-
gorithm for lossy compression of data [6]. It consists of an en-
coder, that compresses the data and a decoder, which decom-
presses the data. The main components are a predictor and a
quantizer. The goal is to minimize the variance σ2

e of the pre-
diction error e := x − x̂, where x is the original signal and x̂ is
the prediction. This minimization is equivalent to maximizing
the so called prediction gain

PG := 10 · log10

(
σ2

x

σ2
e

)
, (2)

where σ2
x is the variance of the original source signal x.

The prediction error e is quantized by a quantizer, which
maps intervals to single values and thus introduces irreversible
distortion, and the resulting quantization indices, which indi-
cate the mapped values of the quantizer, are transmitted to the
decoder.

Maximum compression is achieved, if the quantization in-
dices created by the quantizer are further compressed using
lossless compression algorithms. Instead of implementing an
actual lossless compression algorithm, in this work, the con-
ditional entropy of context-size two is estimated to obtain the
achievable additional lossless compression. Using sufficient so-
phisticated lossless compression algorithms, the conditional en-
tropy can be achieved to an arbitrary degree.

3.2. Predictive Vector Quantization

In predictive vector quantization (PVQ), the basic coding
method is identical to DPCM, but instead of a scalar prediction
and scalar quantization, vector prediction and vector quantiza-
tion are applied [6]. This is achieved by splitting the original
signal x(n), where n denotes discrete time, into N subsignals
xi(N · n + i) with i ∈ {0, 1, · · · ,N − 1}, subsequently creating

3
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the vector process X(n) := (x0(n), . . . , xN−1(n))T of dimension
N. The vector process X(n) is then predicted using vector pre-
diction and the prediction error is then quantized using vector
quantization [6].

3.3. Quantization

Three different scalar quantizers are evaluated in DPCM:
uniform quantization, max-lloyd quantization and variance-
adaptive quantization. In this work, variance-adaptive quantiza-
tion is implemented as described in [9]. For the uniform quan-
tizer, the stepsize was initially set according to tabulated op-
timal values taken from [9] and then, starting from these val-
ues, the step size was optimized to minimize the mean-squared
quantization error. For PVQ, entropy-constrained vector quan-
tization [6] is used for which the codebook was obtained using
the vector quantization design tool of MATLAB.

3.4. Lossless compression

To minimize the mean codeword length, lossless compres-
sion has to be applied to compress the quantization indices of
the respective coding methods. Fundamentally, lossless com-
pression is achieved by mapping likely quantization indices to
short codewords, i.e. bitstrings, and unlikely quantization in-
dices to long codewords. The tight lower bound of the achiev-
able compression, measured by the mean codeword length, is
given by the (source) entropy. The (conditional) entropy H(Y |X)
of order or context-size D is defined as

H(Y |X) = −
∑

x∈AD, y∈A

pX,Y (x, y) log
pX,Y (x, y)

pX(x)
, (3)

where A is the underlying alphabet of the source. Here, A =

{0, 1, . . . ,NR − 1}, where NR is the size of the codebook of the
quantizer of the DPCM or PVQ.

In this work, instead of applying an actual lossless compres-
sion algorithm, the achievable mean codeword length of such
algorithms is estimated by the conditional entropy. Therefore,
the acceleration data was compressed by the lossy compression
algorithms and the conditional entropy of the quantization in-
dices of the coding algorithms were estimated.

3.4.1. Method
Each recorded acceleration signal was independently coded

with each coding algorithm listed in Table 1. For each algo-
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Table 1: Overview of the evaluated coding methods together with their labels
used throughout the manuscript.

Model Label Description
DPCMU DPCM with uniform quantization
DPCMM DPCM with max-lloyd quantization
DPCMV DPCM with variance-adaptive quantization

PVQ PVQ with k-means vector quantization

rithm, quantizer resolutions of 1 bit/sample up to 4 bit/sample
were used. The coding algorithms were individually optimized
for each recorded signal, i. e. quantizers and predictor coeffi-
cients were newly trained for each recorded signal. The over-
head of transmitting or storing the quantizer codebooks and pre-
dictor coefficients to the decoder made up less than one promille
of the size of the compressed data. For prediction, static linear
predictors were used, each specifically trained on the individual
signals. Several predictor orders between 1 and 50 were tested.
Adaptive least-mean-squared prediction was also tested but did
not indicate major improvements. The rate of a coding algo-
rithm in this manuscript is defined as the conditional entropy of
order two of the quantization indices of the respective coding
algorithms in bit/sample.

4. Results

The achieved prediction gain on the acceleration data across
preloads of about 6 bit/sample to 7 bit/sample is depicted in Fig.
4. The results suggest an increase of the achievable prediction
gain with a decrease of the preload.

The rate-distortion curves, i. e. the rate across mean-squared
error (MSE), across the coding algorithms are depicted in Fig.
5 for preload C1, where a predictor order of 50 was used. The
MSE was calculated using all of the original, uncompressed ac-
celeration data and all of the corresponding coded data. For the
PVQ, a dimension N = 3 was used. Generally, the rate of the
coding algorithms was 15-30 % smaller than the correspond-
ing quantizer resolution in bit/sample, suggesting a significant
benefit of lossless compression of the quantized signal.

The accuracy of the condition monitoring across MSE is de-
picted for outward journeys in Fig. 6 a) and for inward journeys
in Fig. 6 b). The markers denote the performance at the respec-
tive quantizer resolution, where quantizer resolutions ranging
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order of 50, whereas (c) was obtained with a predictor order of 10.

from 1 bit/sample to 4 bit/sample are shown. For inward jour-
neys, the accuracy was monotonically increasing with decreas-
ing MSE. However, for outward journeys DPCMU and DPCMV

achieved maximum accuracy at 2 bit/sample and 3 bit/sample.
Additionally, DPCMM was tested with quantization resolu-

tions of 4 bit/sample to 7 bit/sample on inward journeys. On the
right, Fig. 6 c) depicts the reference accuracy of the condition
monitoring on uncompressed data in comparison to the accu-
racy A of the condition monitoring. Here, the condition moni-
toring was trained on uncompressed data. Even for 7 bit/sample,
the reference accuracy of about 97.5 % was not achieved with
an accuracy gap of 6 %. In contrast, as shown on the left in
Figure 6 c, when trained on coded data, the accuracy of the
condition monitoring was nearly 100 % for all coding meth-
ods at 4 bit/sample. At a quantizer resolution of 4 bit/sample,
including the lossless compression, the bitrate is reduced by
about 81.5 % with respect to the original data resolution of
16 bit/sample. However, the test performance on uncoded data
was about 82 % and thus considerably reduced and reduced fur-
ther with decreasing quantizer resolution.

5. Discussion

The achieved prediction gain of 6 dB to 7 dB is compara-
tively low considering the high sampling rate of 100 kHz of the
acceleration sensors. Interestingly, there seems to be a relation-
ship between the preload and the predicitability, which the pre-
diction gain measures, of the acceleration data. An explanation
could be that larger balls, as used to achieve higher preloads,
perform a larger amount of work when entering or leaving the
contact zone of the ball screw nut. This should result in vibra-
tions of increasing amplitude when the preload increases. These
vibrations could be less predictable than the acceleration due to
the balls already inside the ball screw and the deacceleration
due to friction.

With respect to rate-distortion, PVQ performed the best out
of the investigated coding algorithms, aside for a quantization
resolution of 1 bit/sample, as shown in Fig. 5. However, a direct

comparison is not entirely reasonable, because at a dimension
of N = 3 and a predictor order of 50, PVQ actually uses the
previous 150 time steps to predict the next sample vector. For
inward journeys of the ball screw, even at 4 bit/sample, there
was a significant drop of the accuracy of about 10 % and more
across coding algorithms as shown in Fig. 6 a).

Interestingly, on outward journeys, the accuracy was not
monotonically increasing with decreasing mean-squared error
(MSE) and the maximum accuracy was attained at 2 bit/sample
with DPCMU , where the MSE was about 42.8 m2/s4. While it
is common practice to consider inward and outward journeys
separately, as different behavior is expected, the exact reason
for the great difference of the impacts of the coding distortion
on the condition monitoring is unknown.

For inward journeys, increasing the quantizer resolution to
7 bit/sample did still not yield the reference accuracy of about
97.5 % that is achieved on uncompressed data. At 7 bit/sample,
only very small distortions of the signal peaks are apparent.

However, in principle using the condition monitoring on
coded data is feasible at lower quantizer resolutions as shown
in Figure 6 c) for 4 bit/sample on the left. Here, the condition
monitoring was trained on the coded data. Equally high accu-
racy is also achieved at lower quantizer resolutions, even down
to 1 bit/sample, because the principal components exhibit an in-
creasing clustering tendency with decreasing quantizer resolu-
tion. However, because the principal components also perform a
rotation with respect to the principal components obtained from
uncompressed data, the accuracy when tested on the uncoded,
original data is increasingly poor with decreasing quantizer res-
olution.

The decreased accuracy even at 7 bit/sample on inward jour-
neys suggests that the condition monitoring is very sensitive to
distortions of the peaks of the signals. As the signal maximum
and the signal energy, which can be greatly affected by signal
peaks, are two of the input features of the PCA used by the con-
dition monitoring this is not unreasonable. Considering the dif-
ference of the prediction gain, especially of preload class C0,
it could be, that using the same quantizer resolution, the dis-
tortions of the signals due to quantization are not equal across

5



Author name / Procedia CIRP 00 (2021) 000–000 6

preload classes. An increase of the prediction gain in general
allows to achieve a smaller MSE at the same quantization res-
olution. Therefore, it is possible that this introduces a ”bias” in
the classification and decreases the accuracy of the condition
monitoring except at very high quantizer resolutions.

On outward journeys of the ball screw, the accuracy of the
condition monitoring was found to be not monotonically de-
pendent on the MSE. Similar to other branches of lossy coding,
the MSE appears to be a suboptimal measure of the distortion
introduced in a signal by a coding algorithm with respect to the
condition monitoring. As the applied condition monitoring first
calculates a set of features from the data which are then used for
classification, it seems evident that using the distortion of these
features, perhaps alongside the MSE, should yield a superior
measure of signal distortion, in the sense that it could directly
measures the impact of signal distortions on the accuracy of
the condition monitoring. If the condition monitoring and the
coding algorithm are designed and optimized in conjunction,
similar to the algorithm optimization in [12], a significant im-
provement of robustness of the condition monitoring could be
achieved as well as a reduction of bitrate of coding algorithm
without affecting the accuracy of the condition monitoring.

6. Conclusion

In this work, the influence of lossy coding algorithms on a
condition monitoring algorithm (CMA) using acceleration sig-
nals is investigated. The CMA is based on principal component
analysis and uses 17 features such as standard deviation to clas-
sify the preload condition of a ball screw. It is shown that bit
rate reduction through lossy compression algorithms is possi-
ble without affecting the condition monitoring - as long as the
compression algorithm is known. When trained and tested on
coded data, the original bitrate can be reduced by around 81.5%
without affecting the accuracy of the condition monitoring. In
contrast, an unknown compression algorithm reduces the classi-
fication accuracy of condition monitoring by about 20 % when
coding with a quantizer resolution of 4 bit/sample.
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2019. A Review of Machine Learning for the Optimization of Production
Processes. The International Journal of Advanced Manufacturing Technol-
ogy 104, 1,889–1,902. doi:10.1007/s00170-019-03988-5.

[20] Yagmur, T., 2014. Analyse, Verbesserung und Beschreibung des Ver-
schleißverhaltens von Kugelgewindetrieben für Werkzeugmaschinen. Dr.-
Ing. Dissertation. Rheinisch-Westfälische Technische Hochschule Aachen.

[21] Zhang, Y., Li, J., 2005. DPCM-based Vibration Sensor Data Com-
pression and its Effect on Structural System Identification. Earthquake
Engineering and Engineering Vibration 4, 153–163. doi:10.1007/
s11803-005-0033-8.

6

http://dx.doi.org/10.1108/LHT-06-2017-0117
http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1109/COMST.2015.2494502
https://tinyurl.com/y5upgmnb
https://tinyurl.com/y5upgmnb
http://dx.doi.org/10.1016/j.ijmachtools.2011.09.008
http://dx.doi.org/10.1016/j.ijmachtools.2011.09.008
http://dx.doi.org/10.1007/978-1-4615-3626-0
http://dx.doi.org/10.1016/j.measurement.2015.02.017
http://dx.doi.org/10.1016/j.measurement.2015.02.017
http://dx.doi.org/10.1007/s10618-019-00619-1
http://dx.doi.org/10.1007/s10618-019-00619-1
http://dx.doi.org/10.1016/j.cirp.2012.03.138
http://dx.doi.org/10.1016/j.cirp.2012.03.138
http://dx.doi.org/10.1109/WASPAA.2015.7336937
http://dx.doi.org/10.1784/204764216819257169
http://dx.doi.org/10.1784/204764216819257169
http://dx.doi.org/10.1049/cp:19971178
http://dx.doi.org/10.1109/TIM.2017.2759418
http://dx.doi.org/10.1007/s00170-019-03988-5
http://dx.doi.org/10.1007/s11803-005-0033-8
http://dx.doi.org/10.1007/s11803-005-0033-8

